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Congenital long QT syndrome (LQTS) is an inherited cardiac ion 

channelopathy characterised by a variable degree of QT interval 

prolongation on ECG and an increased susceptibility to life-threatening 

ventricular arrhythmias (torsades de pointes and ventricular fibrillation) 

in the absence of morphological cardiac disease.

LQTS is estimated to affect one in 2,000 individuals.1 It is usually 

diagnosed in children and young adults, with a mean age at presentation 

of 14 years2; the annual rate of sudden cardiac death (SCD) in untreated 

patients is estimated to be between 0.33 %3 and 0.9 %,4 and the rate 

of syncope is 5 %.4 Mutations in 17 genes have been associated with 

LQTS5. The subtypes of LQTS can be grouped into three categories: 

• Thirteen genes have been reported in autosomal dominant forms of 

Romano-Ward syndrome (LQT1–6 and 9–15), which are characterised 

by an isolated prolongation of the QT interval. Among them, LQT1 

(KCNQ1 gene), LQT2 (KCNH2 gene) and LQT3 (SCN5A gene) account 

for the majority (75 %) of genetically identifiable cases.6

• Two autosomal dominant forms of LQTS are associated with a 

phenotype extending beyond cardiac arrhythmia. In addition to the 

prolonged QT interval, associations include muscle weakness as 

well as facial dysmorphism in Andersen-Tawil syndrome (LQTS7) 

and hand/foot, facial and neurodevelopmental features in Timothy 

syndrome (LQTS8). 

• There are also two autosomal-recessive forms of LQTS (Jervell 

and Lange–Nielsen syndrome: JLN 1–2), which are associated with 

profound sensorineural hearing loss.6

There is a variable penetrance in patients with genotype-positive LQTS, 

resulting in variation in both clinical and ECG manifestations, as well as 

between family members with the same genotype.7

In general, the QT interval is longer in athletes than in non-athletic 

controls because of the lower resting heart rates associated with 

athletic training, while the corrected QT (QTc) of the athletic group is 

within normal limits, although toward the upper limit.8-10 

Intense sports participation is considered to be a potential risk-taking 

behaviour for patients with LQTS in general and those with LQT1 

in particular. Therefore, correct diagnosis and risk stratification is 

fundamental to advising patients appropriately about sports practice.

This review will discuss the effect of sport on QT prolongation, the best 

way to diagnose patients and to attempt accurate risk stratification in 

athletes. Finally, this study will discuss current evidence on competitive 

sports participation in athletes with LQTS.

Challenges of QT Measurement in Athletes
Studies have suggested that the ability of cardiologists and even heart 

rhythm specialists to accurately measure the QTc is suboptimal.11 

The accuracy of computer-generated QTc values is approximately 

90 –95 %; the duration of the QT interval therefore should be measured 

manually from the beginning of the QRS complex to the end of  

the T wave. 

The first difficulty is to define the end of the T wave. This is usually done 

by drawing the tangent line to the steepest part of the descending 

portion of the T wave, chosen in a lead where the T wave has the 

greatest amplitude, taking its intercept with the isoelectric line as 

the end of the T wave (Figure 1).12,13 This ‘teach the tangent, avoid the 

tail’ method will help to exclude low amplitude U waves, which are 

common in athletes. QT interval should be preferably measured using 

lead II or V5; the longest value should be considered. 
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As the QT changes with the heart rate, there are several formulas 

to correct QT interval with the heart rate, the most used is Bazett’s 

formula – QTc = QT/√RR – using the RR interval preceding the QT 

interval measured.14 As the majority of the available data for congenital 

LQTS are derived from studies using Bazett’s formula, this is still the 

recommended way to adjust QT in athletes.15 Using Bazett’s formula, 

the QTc interval represents the value of the QT interval normalised for a 

heart rate of 60 BPM, i.e. a RR interval of 1000 ms. In case of a significant 

fluctuation in heart rate, as seen in respiratory arrhythmia, it is important 

to calculate the average QT interval and average RR interval to improve 

accuracy15. The response of the QT interval to a change in heart rate is 

not instantaneous, with full adaptation taking 1–3 minutes.16 

Bazett’s formula has been criticised as inaccurate, especially at 

extreme heart rates of ≤40 BPM and >120 BPM15. At slow heart rates, 

which frequently occur in athletes (due to change in the automatic 

balance with a lower sympathetic activity and a higher vagal tone at 

rest), the QTc interval may be underestimated if Bazett’s formula is 

used (Figure 2).2,15 If the heart rate is too slow, the ECG should therefore 

be repeated after a mild aerobic activity to achieve a heart rate closer 

to 60 BPM where the formula is most accurate; conversely, if the heart 

rate is too fast, repeating the ECG after a longer resting period should 

be considered. Holter ECG monitoring is also useful to measure QT 

interval at a stable heart rate of 60 BPM, where no adjustment for heart 

rate is needed. 

An alternative solution, to avoid using correction formulas, is to use 

QT/RR scatter diagrams obtained from individual athletes.17 Using 

such a diagram might make it easier to measure the QT interval and 

corresponding RR value of an individual athlete to ascertain if they are 

in the normal range (Figure 3).

Which Cut-off Should be Used in Athletes? 
Clinical observations have shown that training can increase and 

detraining decrease the QT interval duration in athletes.8 Vagal 

stimulation is increased in athletes, which prolongs the QT interval, 

independently of the induced bradycardia.12 An isolated long QT interval 

in an athlete may result from the effect of delayed repolarisation as a 

result of increased left ventricular mass.10

The cut-off values used to identify whether a QTC interval is 

prolonged vary in the literature. Incomplete penetration (i.e. where 

people who carry a genetic mutation do not show the pathological 

phenotype) has been clearly demonstrated in LQTS. Consequently, 

there is a remarkable overlap of QT values between normal subjects 

and those carrying an LQTS mutation at the upper values of QT 

distribution. Therefore, no screening programme will identify all 

persons with LQTS.18,19 The QTc cut-off value used to decide whether 

further evaluation is needed must be chosen carefully to balance the 

frequency of abnormal results with the positive predictive value when 

LQTS is detected incidentally. 

QT interval is modulated by sex so different cut-off values are used 

after puberty.20 The latest ECG recommendations in athletes consider 

that QTc values of >470  ms in men and >480  ms in women are the 

thresholds of QT prolongation that warrant further assessment in 

asymptomatic athletes.15 These cut-off values are around the 99th 

percentile and are consistent with thresholds defined by the 36th 

Bethesda Conference.21

However, not only the duration of QT interval should be considered. 

Recent European Society of Cardiology (ESC) guidelines2 emphasised 

that a Schwartz score of >3 might also be used to diagnose LQTS.22 

This score includes QT interval duration on a resting ECG, occurrence 

of torsades de pointes, T wave alternans, morphology of the QT, low 

heart rate for age (which might be difficult to identify in an athlete); 

clinical history of symptoms such as syncope (especially if occurring 

during stress), congenital deafness; family history (definite LQTS or 

unexplained SCD below the age of 30 years among immediate family 

members) (Table 1). 

LQTS is also diagnosed, irrespective of the QT duration, in the presence 

of a confirmed pathogenic LQTS mutation.

Complementary Exploration for LQTS Diagnosis 
Before considering congenital LQTS as a diagnosis, acquired causes 

of prolongation of QT interval should be excluded. The most frequent 

causes are the use of QT-prolonging medication, metabolic changes 

and electrolyte disorders (such as hypokalemia).23 This abnormality 

might also be encountered in athletes. 

It might be valuable to repeat resting ECG measurements for  

several days, especially if the QT value is borderline. In endurance 

athletes, because of the frequent occurrence of bizarre T-wave shapes, 

it could be useful to repeat resting ECG after a period (2–4 weeks) of 

complete detraining. 

Figure 1: Measure of QT Using The ‘Teach the Tangent, 
Avoid-the-Tail’ Method

QTc (Bazett) = QT/√RR

Figure 2: QT Corrected Interval with Bazett’s Formula 
According to Heart Rate

Source: personal data from a cohort of 5,092 French elite athletes
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Evaluating the QT dynamic can improve diagnostic accuracy in some 

patients. An exercise test is useful to identify ventricular arrhythmias 

related to LQTS and to assess the evolution of QT during recovery.15 

Indeed, a QT duration at 4  minutes of recovery from exercise stress 

above 480 ms is included in the 2011 update of the Schwartz score.24–26 

Holter ECG monitoring, which is useful to measure QT at a HR of 

60 BPM to avoid having to use QT correction formulas, is also used to 

depict ventricular arrhythmias and to assess the dynamic evolution 

of QT.27 Pharmacological tests might also be performed; a paradoxical 

increase of an uncorrected QT interval during infusion of low-dose 

epinephrine has been demonstrated in patients with LQT1.28,29 

The response of the QT interval to the brief tachycardia provoked by 

standing suddenly is another way to assess QT dynamics.30 Viskin et 

al. demonstrated that, in response to brisk standing, patients with 

LQTS and untrained control subjects responded with similar heart 

rates, but the response of the QT interval to this tachycardia differed. 

On average, the QT interval of controls shortened by 21±19  ms 

whereas the QT interval of LQTS patients increased by 4±34  ms 

(p<0.001). Since the RR interval shortened more than the QT interval, 

during maximal tachycardia the corrected QT interval increased by 

50±30 ms in the control group and by 89±47 ms in the LQTS group 

(p<0.001). A similar experiment was performed by Pressler et al., 

which found that in healthy elite athletes, the QT interval shortened 

in all athletes by 40±17  ms, so QTc increased by 12±22  ms.31 

Unfortunately, the authors are not aware of a study that assessed 

athletes with LQTS. 

As LQTS is hereditary, clinical familial screening should be considered 

if the condition is strongly suspected. Because penetrance varies,7 

it might be helpful to assess first degree relatives as well in case of 

borderline phenotype (with history, clinical examination and a resting 

ECG) to increase the diagnostic accuracy in the index athlete. 

The Heart Rhythm Society (HRS) and the European Heart Rhythm 

Association (EHRA) have issued a statement on genetic testing in 

LQTS.6 They recommend genetic testing in any patient where there 

is a strong clinical suspicion for LQTS based on clinical history, family 

history and expressed electrocardiographic phenotype (resting 12–lead 

ECGs and/or provocative stress testing with exercise or catecholamine 

infusion). In a patient with a QTc>480  ms (prepuberty) or >500  ms 

(adults) on serial ECG analysis, genetic testing is recommended. In 

case of QTc values >460  ms (prepuberty) or >480  ms (adults), this 

might also be considered. As the HRS/EHRA guidelines are not specific 

to athletes, ECGs should be interpreted with common athlete-specific 

findings in mind.15 

Nevertheless, LQTS genetic testing should not be performed 

systematically without any evidence of LQTS and should be interpreted 

with caution if diagnosis is borderline. Indeed, the significant rate of 

rare variants of uncertain significance in the LQT 1–3 genes complicates 

correct mutation identification and shows that LQTS genetic testing 

should be carried out based upon clinical suspicion rather than being 

ordered indiscriminately.32 A cascade familial genetic screening should 

be performed if the index athlete has a positive genotype.

Risk Stratification in Athletes
Risk stratification is difficult, especially in the setting of competitive 

sport. In the general adult population, the most important predictors 

of outcome are QT interval duration (≥500 ms), male sex in childhood 

but female sex in adulthood, and a history of cardiac events including 

syncope. 

Genotype is also associated with outcome and with different 

arrhythmia triggers. LQT1 genotype seems to be associated with 

a more positive prognosis, especially with a better response to 

beta-blocker therapy.3,33,34 Exercise is the most important trigger of 

arrhythmia in this form of LQTS. Schwartz et al. demonstrated that 

exercise, especially swimming, was the trigger in 62  % of cardiac 

events in LQT1, 13 % of LQT2 and 13 % of LQT3. Furthermore, exercise 
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Figure 3: Scatter Diagram of QT/RR

Source: personal data obtained from individual athletes

Table 1: Schwartz score LQTS diagnostic criteria and their 
values in athletes

Schwartz Score Points Questionable 

in Athletes

Electrocardiographic findings

A QTc duration (ms) (Bazett formula)

≥480 3

460–470 2 x

450 (in males) 1 x

B Torsades de pointes* 2

C T-wave alternans 1

D Notched T wave in three leads 1

E Low heart rate for age 0.5 x

Clinical history

A Syncope*

With stress 2

Without stress 1

B Congenital deafness 0.5

Family history

A Family members with definite LQTS 1

B Unexplained sudden cardiac death below 
the age of 30 among immediate family 
members

0.5

*Mutually exclusive. Source: Schwartz PJ, et al.22 With permission from Wolters Kluver.
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was found to be the trigger of 68 % of lethal cardiac events in LQT1. 

Emotional stress and auditory stimuli were specific triggers of cardiac 

events in LQT2, and events were most likely to occur at sleep or at 

rest in LQT3.35 These differences in triggers of cardiac events make 

competitive sport disqualification more questionable in LQT2–3.

 

Patients with LQT1 with malfunctioning IKs channels are expected 

to shorten their QT intervals during tachycardia less effectively than 

normal individuals. A major catecholamine release, as happens during 

intense exercise, without a proper QT adaptation sets the stage for 

early afterdepolarisations, which may then lead to torsades de pointes 

via re-entry.35 This concept is supported by an experimental model 

for LQT1 in which IKs blockade greatly increases the probability of 

torsades de pointes in the presence of catecholamines. This study also 

demonstrated the protective effect of beta-blockers, as they prevent 

the actions of isoproterenol to increase transmural dispersion of 

repolarization and to induce torsades de pointes.36 

The exact mechanism of the specific arrhythmogenic effect of 

swimming in people with LQT1 is unclear. The hypothesis is that 

autonomic conflict plays a role. The sympathetic nervous system is 

activated because of physical effort and the cold shock response, while 

the parasympathetic nervous system is activated by the diving response 

induced by face immersion and voluntary apnoea. This concomitant 

activation of both sympathetic and parasympathetic autonomic 

systems may explain why swimming seems to precipitate premature 

ventricular contractions.37 Epinephrine QT stress testing29 and cold-

water face immersion38 demonstrate a paradoxical prolongation in 

the QT interval in LQT1. Furthermore, the consequences of a syncope 

during swimming are more severe that one during dry land activities 

because of the risk of drowning.39

Because people with LQT1 are more susceptible to cardiac events 

during exercise than those with LQT2–3, genotype identification might 

be relevant to assess risks related to sports. The correlation between 

genotype and ST–T morphologies on the ECG is not always clear. 

Zhang et al. demonstrated that typical ST–T patterns were present 

in 88 % of LQT1 and LQT2 gene carriers but in only in 65 % of those 

carrying LQT3; with ECG analysis, the mean sensitivity/specificity 

for LQT1, LQT2 and LQT3 was 61 %/71 %, 62 %/87 % and 33 %/98 % 

respectively40. Therefore, genotyping might be used to improve risk 

stratification, keeping in mind that in about one-third of cases there 

is a failure to identify mutations.40 Complicating our interpretation of 

genotype is the complexity of variable penetrance and modifier genes 

that are relatively poorly understood, which may account for the 

pleiotropy between different families with the same mutation.

Nevertheless, recent retrospective studies temper previous 

conclusions. Johnson and Ackerman demonstrated the absence of 

any lethal sport-related event in a cohort of 353 athletes whose LQTS 

syndrome was well managed. However, the majority of patients did not 

participate in competitive sports or chose to discontinue sport (63 %). 

The remaining 130 patients (37  %) chose to continue competitive 

sports; most of them (87  %) were treated with beta-blockers and 20 

(15 %) had an ICD implanted. Just one 9-year-old child experienced two 

sport-related events and an appropriate ICD shock was delivered; there 

was non-adherence to beta-blocker medication.41 

Another retrospective study was conducted by Chambers et al.,42 in 

172 children with LQTS, of whom 66 (38 %) exercised on a recreational 

basis and 106 (62 %) competitively. No syncopal events were reported 

during competitive exercise, and no cardiac arrests or deaths were 

reported during recreational or competitive exercise, but four patients 

experienced exertional syncope during recreational sport. The same 

results were demonstrated by Aziz et al. on a retrospective cohort of 

103 children with LQTS involved in recreational (75 %) or competitive 

sport practice (25 %). No patients experienced LQTS symptoms during 

sports participation.43 

These studies had limitations. They were retrospective, involved 

young subjects, and sports with the highest cardiovascular demand 

were poorly represented (only a few class IIIB and IIIC sports), with 

few subjects practising at a national/professional level. Assessing the 

suitability of competitive/professional sport to young adults with LQTS 

might be a different task from advising children regarding participation 

in normal sport activities.

As these studies state, optimal treatment is warranted. As the 

ESC guidelines recommend, beta-blockers are the cornerstone of 

treatment and are recommended in patients with a diagnosis of LQTS; 

they should also be considered in carriers of a causative LQTS mutation 

who have a normal QT interval. ICD implantation with the use of beta-

blockers is recommended in those with LQTS with previous cardiac 

arrest, and should be considered in patients who have experienced 

syncope and/or ventricular tachycardia while receiving an adequate 

dose of beta-blockers.2 

Eligibility for Competitive Sport Participation 
According to European and US Guidelines
Several guidelines on the eligibility of athletes with LQTS for competitive 

sport exist, and conclusions by different experts are not the same on 

both sides of the Atlantic. 

The ESC recommendations for competitive sport participation, 

published in 2005, are the most restrictive44. These state that congenital 

LQTS is a contraindication for any type of sports, even without 

documented major arrhythmic events. In 2015, ESC guidelines for 

the management of ventricular arrhythmia and prevention of SCD 

recommended the avoidance of strenuous swimming, especially in 

LQT1, but no other kinds of sports were mentioned.2 

The more recent US guidelines on suitability and disqualification 

recommendations for competitive athletes in cardiac channelopathies, 

proposed in 2015, are less restrictive.45 Of course, experts recommend 

symptomatic athletes should not compete and that a comprehensive 

evaluation should be performed by a heart rhythm specialist or genetic 

cardiologist with sufficient experience and expertise with LQTS. For an 

athlete with symptomatic LQTS or an ECG with manifest LQTS, competitive 

sports participation (except competitive swimming in a previously 

symptomatic person with LQT1) may be considered after treatment 

has been implemented and appropriate precautionary measures taken, 

assuming the athlete has been asymptomatic on treatment for at least 

3 months. Athletes and their families should be given information on the 

potential risks of competitive sports participation.

In asymptomatic genotype-positive/phenotype-negative athletes, the 

experts concluded that it was reasonable for them to participate in all 

competitive sports as long as they took precautionary measures. These 

include the avoidance of QT-prolonging drugs, electrolyte/hydration 

replenishment and avoidance of dehydration, avoidance or treatment 
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of training-related heat exhaustion or heat stroke, as well as acquiring 

a personal automatic external defibrillator (AED) and establishing 

an emergency action plan with school or team officials. Pundi et al. 

evaluated retrospectively the efficacy of AEDs for prevention of sudden 

cardiac arrest in children with LQTS. The rate of needing an external 

defibrillator rescue was relatively low (three AED rescues in 1,700 

patient-years). Irrespective of the external defibrillator used (personal, 

community or hospital AED) or the person delivering the shock 

(medical provider or parent/school personnel), the AED was successful 

in recognising and treating the LQTS-triggered ventricular arrhythmia 

appropriately.46 Furthermore, Drezner et al. demonstrated that survival 

rates were higher in schools with an established emergency action 

plan for sudden cardiac arrest than in those without (79  % against 

44 %; odds ratio 4.6) and if an onsite AED was used compared to an 

offsite AED provided by emergency medical services (80  % versus 

50 %; OR 4.0).47

Why are the guidelines so different? It may be argued that the 

European guidelines were written before the most recent studies on 

LQTS and sport.41,42 The variation might also reflect a cultural contrast 

between the US and Europe regarding personal freedom to pursue 

life’s goals versus the role of the state to ensure the safety of its 

population.48 What is acceptably safe is not solely a medical decision 

– it is also a social and ethical question.49 In some European countries, 

for example France or Italy, physicians are asked to certify that an 

athlete is fit to compete without any restriction. This legal position 

will lead to a paternalistic model, where the athlete’s autonomy is 

limited to what the physician will consider for the good of the patient, 

regardless of the will of the athlete. In the US, the physician is asked for 

medical advice on risk stratification, and the athlete is responsible for 

the final decision after having received thorough information, which 

lead to a more modern shared decision-making or informed decision 

model.50 In the US, under the latest US guidelines, the return to play 

of an athlete with LQTS will have to involve the school and or team 

official, who can refuse to accept a medical decision.51 

Conclusion
There is still only a paucity of firm prospective data that can guide 

practitioners in making decisions about sports participation in athletes 

with LQTS. Nevertheless, current ESC guidelines are probably too 

restrictive. In the era of precision medicine, the recommendation of 

disqualifying every single athlete with LQTS athlete, regardless of 

any risk stratification or even genotype-positive/phenotype-negative 

athletes, is probably too restrictive. n

Clinical Perspective
•  Appropriate LQTS cut-off values in athletes are 470 ms in men 

and 480 ms in women

•  Beta-blockers are the cornerstone therapy for patients with 

a clinical diagnosis of LQTS and should also be considered in 

genotype-positive/phenotype-negative patients.

•  A comprehensive evaluation, with risk stratification according 

to age, sex, genotype and symptoms should be performed, with 

referral to a cardiologist with specialist skills in LQTS and/or 

sports cardiology.

•  Current European guidelines (2005) recommend that patients 

with LQTS should be excluded from any competitive sports. The 

more recent US guidelines (2015) are less restrictive, especially 

in athletes who are genotype-positive/phenotype-negative and 

asymptomatic.
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